Functional Data Analysis

Front Cover
Springer Science & Business Media, Jun 8, 2005 - Mathematics - 426 pages

Scientists and others today often collect samples of curves and other functional observations. This monograph presents many ideas and techniques for such data. Included are expressions in the functional domain of such classics as linear regression, principal components analysis, linear modeling, and canonical correlation analysis, as well as specifically functional techniques such as curve registration and principal differential analysis. Data arising in real applications are used throughout for both motivation and illustration, showing how functional approaches allow us to see new things, especially by exploiting the smoothness of the processes generating the data. The data sets exemplify the wide scope of functional data analysis; they are drawn from growth analysis, meteorology, biomechanics, equine science, economics, and medicine.

The book presents novel statistical technology, much of it based on the authors’ own research work, while keeping the mathematical level widely accessible. It is designed to appeal to students, to applied data analysts, and to experienced researchers; it will have value both within statistics and across a broad spectrum of other fields.

This second edition is aimed at a wider range of readers, and especially those who would like to apply these techniques to their research problems. It complements the authors' other recent volume Applied Functional Data Analysis: Methods and Case Studies. In particular, there is an extended coverage of data smoothing and other matters arising in the preliminaries to a functional data analysis. The chapters on the functional linear model and modeling of the dynamics of systems through the use of differential equations and principal differential analysis have been completely rewritten and extended to include new developments. Other chapters have been revised substantially, often to give more weight to examples and practical considerations.

Jim Ramsay is Professor of Psychology at McGill University and is an international authority on many aspects of multivariate analysis. He was President of the Statistical Society of Canada in 2002-3 and holds the Society’s Gold Medal for his work in functional data analysis.

Bernard Silverman is Master of St Peter’s College and Professor of Statistics at Oxford University. He was President of the Institute of Mathematical Statistics in 2000–1. He is a Fellow of the Royal Society. His main specialty is in computational statistics, and he is the author or editor of several highly regarded books in this area.

 

Contents

II
1
III
5
V
9
VI
11
VII
12
VIII
13
X
15
XIII
16
CLXXVI
206
CLXXVII
207
CLXXVIII
208
CLXXIX
209
CLXXX
210
CLXXXI
211
CLXXXII
213
CLXXXIV
214

XV
17
XVI
18
XVII
19
XVIII
20
XIX
21
XXI
22
XXII
24
XXIII
26
XXIV
27
XXV
28
XXVI
29
XXVIII
30
XXIX
33
XXX
34
XXXI
37
XXXII
38
XXXIV
39
XXXVI
40
XXXVII
41
XXXIX
43
XL
45
XLI
46
XLII
47
XLIII
49
XLIV
53
XLVI
54
XLVIII
55
LI
56
LIII
57
LIV
59
LVII
60
LVIII
61
LIX
62
LX
63
LXI
64
LXII
66
LXIII
67
LXV
69
LXVI
70
LXVII
71
LXVIII
72
LXIX
73
LXX
74
LXXI
76
LXXII
77
LXXIII
78
LXXV
79
LXXVI
81
LXXVIII
82
LXXIX
83
LXXX
84
LXXXII
85
LXXXIII
86
LXXXIV
87
LXXXV
89
LXXXVI
90
LXXXVII
91
LXXXIX
92
XCI
93
XCII
94
XCIV
96
XCV
97
XCVI
99
XCVII
100
XCVIII
101
XCIX
102
C
103
CI
104
CIII
105
CIV
106
CV
107
CVI
108
CVII
109
CVIII
111
CIX
113
CX
114
CXI
115
CXIV
116
CXV
117
CXVI
118
CXVII
119
CXVIII
121
CXIX
123
CXX
126
CXXI
127
CXXIII
129
CXXIV
131
CXXV
132
CXXVI
137
CXXVIII
138
CXXIX
140
CXXX
142
CXXXIII
144
CXXXIV
147
CXXXV
148
CXXXVI
149
CXXXVII
151
CXXXVIII
152
CXXXIX
154
CXLI
156
CXLIII
160
CXLIV
161
CXLVI
164
CXLVII
166
CXLVIII
167
CXLIX
168
CL
170
CLI
171
CLII
173
CLIII
175
CLIV
177
CLV
178
CLVI
179
CLVIII
181
CLIX
182
CLXI
184
CLXII
185
CLXIII
187
CLXIV
189
CLXV
190
CLXVII
191
CLXVIII
192
CLXIX
194
CLXX
195
CLXXI
198
CLXXII
201
CLXXIII
204
CLXXV
205
CLXXXVI
215
CLXXXVIII
217
CLXXXIX
218
CXC
219
CXCI
220
CXCV
221
CXCVII
222
CXCVIII
223
CXCIX
225
CCI
229
CCIII
231
CCIV
233
CCV
235
CCVI
236
CCVIII
238
CCIX
239
CCXI
241
CCXII
243
CCXIII
244
CCXIV
247
CCXV
248
CCXVIII
251
CCXIX
255
CCXX
257
CCXXI
258
CCXXII
261
CCXXIII
262
CCXXIV
264
CCXXV
266
CCXXVI
268
CCXXVII
269
CCXXVIII
270
CCXXX
271
CCXXXI
272
CCXXXIII
273
CCXXXIV
275
CCXXXV
276
CCXXXVI
279
CCXXXVII
280
CCXXXVIII
282
CCXL
283
CCXLI
284
CCXLIII
285
CCXLIV
290
CCXLV
291
CCXLVI
292
CCXLVII
293
CCXLVIII
295
CCXLIX
297
CCL
298
CCLI
301
CCLII
305
CCLIII
307
CCLIV
308
CCLV
310
CCLVI
311
CCLVII
312
CCLVIII
313
CCLXI
314
CCLXII
316
CCLXIII
317
CCLXIV
319
CCLXVII
320
CCLXVIII
322
CCLXIX
323
CCLXX
324
CCLXXI
325
CCLXXIII
327
CCLXXIV
328
CCLXXV
329
CCLXXVI
330
CCLXXVII
332
CCLXXVIII
334
CCLXXIX
338
CCLXXXI
339
CCLXXXII
340
CCLXXXIII
343
CCLXXXVI
344
CCLXXXVII
345
CCLXXXVIII
348
CCLXXXIX
349
CCXC
350
CCXCI
351
CCXCII
352
CCXCIV
353
CCXCV
354
CCXCVI
355
CCXCVII
356
CCXCVIII
357
CCXCIX
359
CCC
360
CCCI
361
CCCII
363
CCCIII
364
CCCIV
366
CCCV
367
CCCVI
369
CCCVIII
370
CCCIX
371
CCCX
373
CCCXI
374
CCCXII
379
CCCXIII
380
CCCXIV
381
CCCXV
382
CCCXVII
383
CCCXX
384
CCCXXII
385
CCCXXIII
386
CCCXXIV
387
CCCXXV
389
CCCXXVI
390
CCCXXVII
391
CCCXXIX
392
CCCXXXII
393
CCCXXXIV
394
CCCXXXVI
395
CCCXXXVIII
396
CCCXLI
397
CCCXLII
398
CCCXLIII
399
CCCXLV
400
CCCXLVI
401
CCCXLIX
402
CCCL
405
CCCLI
419
Copyright

Other editions - View all

Common terms and phrases

Bibliographic information