Functional Data Analysis

Front Cover
Springer Science & Business Media, Jun 8, 2005 - Mathematics - 426 pages

Scientists and others today often collect samples of curves and other functional observations. This monograph presents many ideas and techniques for such data. Included are expressions in the functional domain of such classics as linear regression, principal components analysis, linear modeling, and canonical correlation analysis, as well as specifically functional techniques such as curve registration and principal differential analysis. Data arising in real applications are used throughout for both motivation and illustration, showing how functional approaches allow us to see new things, especially by exploiting the smoothness of the processes generating the data. The data sets exemplify the wide scope of functional data analysis; they are drawn from growth analysis, meteorology, biomechanics, equine science, economics, and medicine.

The book presents novel statistical technology, much of it based on the authors’ own research work, while keeping the mathematical level widely accessible. It is designed to appeal to students, to applied data analysts, and to experienced researchers; it will have value both within statistics and across a broad spectrum of other fields.

This second edition is aimed at a wider range of readers, and especially those who would like to apply these techniques to their research problems. It complements the authors' other recent volume Applied Functional Data Analysis: Methods and Case Studies. In particular, there is an extended coverage of data smoothing and other matters arising in the preliminaries to a functional data analysis. The chapters on the functional linear model and modeling of the dynamics of systems through the use of differential equations and principal differential analysis have been completely rewritten and extended to include new developments. Other chapters have been revised substantially, often to give more weight to examples and practical considerations.

Jim Ramsay is Professor of Psychology at McGill University and is an international authority on many aspects of multivariate analysis. He was President of the Statistical Society of Canada in 2002-3 and holds the Society’s Gold Medal for his work in functional data analysis.

Bernard Silverman is Master of St Peter’s College and Professor of Statistics at Oxford University. He was President of the Institute of Mathematical Statistics in 2000–1. He is a Fellow of the Royal Society. His main specialty is in computational statistics, and he is the author or editor of several highly regarded books in this area.

From inside the book

Contents

II
1
III
5
V
9
VI
11
VII
12
VIII
13
X
15
XIII
16
CLXXVII
206
CLXXVIII
207
CLXXIX
208
CLXXX
209
CLXXXI
210
CLXXXII
211
CLXXXIII
213
CLXXXV
214

XV
17
XVI
18
XVII
19
XVIII
20
XIX
21
XXI
22
XXIV
24
XXV
26
XXVI
27
XXVII
28
XXVIII
29
XXX
30
XXXI
33
XXXII
34
XXXIII
37
XXXIV
38
XXXVI
39
XXXVIII
40
XXXIX
41
XLI
43
XLII
45
XLIII
46
XLIV
47
XLV
49
XLVI
53
XLVIII
54
L
55
LIII
56
LV
57
LVI
59
LIX
60
LX
61
LXI
62
LXII
63
LXIII
64
LXIV
66
LXV
67
LXVII
69
LXVIII
70
LXIX
71
LXX
72
LXXI
73
LXXII
74
LXXIII
76
LXXIV
77
LXXV
78
LXXVII
79
LXXVIII
81
LXXX
82
LXXXI
83
LXXXII
84
LXXXIII
85
LXXXIV
86
LXXXV
87
LXXXVI
89
LXXXVII
90
LXXXVIII
91
XC
92
XCII
93
XCIII
94
XCV
96
XCVI
97
XCVII
99
XCVIII
100
XCIX
101
C
102
CI
103
CII
104
CIV
105
CV
106
CVI
107
CVII
108
CVIII
109
CIX
111
CX
113
CXI
114
CXII
115
CXV
116
CXVI
117
CXVII
118
CXVIII
119
CXIX
121
CXX
123
CXXI
126
CXXII
127
CXXIV
129
CXXV
131
CXXVI
132
CXXVII
137
CXXIX
138
CXXX
140
CXXXI
142
CXXXIV
144
CXXXV
147
CXXXVI
148
CXXXVII
149
CXXXVIII
151
CXXXIX
152
CXL
154
CXLII
156
CXLIV
160
CXLV
161
CXLVII
164
CXLVIII
166
CXLIX
167
CL
168
CLI
170
CLII
171
CLIII
173
CLIV
175
CLV
177
CLVI
178
CLVII
179
CLIX
181
CLX
182
CLXII
184
CLXIII
185
CLXIV
187
CLXV
189
CLXVI
190
CLXVIII
191
CLXIX
192
CLXX
194
CLXXI
195
CLXXII
198
CLXXIII
201
CLXXIV
204
CLXXVI
205
CLXXXVII
215
CLXXXIX
217
CXC
218
CXCI
219
CXCII
220
CXCVI
221
CXCVIII
222
CXCIX
223
CC
225
CCII
229
CCIV
231
CCV
233
CCVI
235
CCVII
236
CCIX
238
CCX
239
CCXII
241
CCXIII
243
CCXIV
244
CCXV
247
CCXVI
248
CCXIX
251
CCXX
255
CCXXI
257
CCXXII
258
CCXXIII
261
CCXXIV
262
CCXXV
264
CCXXVI
266
CCXXVII
268
CCXXVIII
269
CCXXIX
270
CCXXXI
271
CCXXXII
272
CCXXXIV
273
CCXXXV
275
CCXXXVI
276
CCXXXVII
279
CCXXXVIII
280
CCXXXIX
282
CCXLI
283
CCXLII
284
CCXLIV
285
CCXLV
290
CCXLVI
291
CCXLVII
292
CCXLVIII
293
CCXLIX
295
CCL
297
CCLI
298
CCLII
301
CCLIII
305
CCLIV
307
CCLV
308
CCLVI
310
CCLVII
311
CCLVIII
312
CCLIX
313
CCLXII
314
CCLXIII
316
CCLXIV
317
CCLXV
319
CCLXVIII
320
CCLXIX
322
CCLXX
323
CCLXXI
324
CCLXXII
325
CCLXXIV
327
CCLXXV
328
CCLXXVI
329
CCLXXVII
330
CCLXXVIII
332
CCLXXIX
334
CCLXXX
338
CCLXXXII
339
CCLXXXIII
340
CCLXXXIV
343
CCLXXXVII
344
CCLXXXVIII
345
CCLXXXIX
348
CCXC
349
CCXCI
350
CCXCII
351
CCXCIII
352
CCXCV
353
CCXCVI
354
CCXCVII
355
CCXCVIII
356
CCXCIX
357
CCC
359
CCCI
360
CCCII
361
CCCIII
363
CCCIV
364
CCCV
366
CCCVI
367
CCCVII
369
CCCIX
370
CCCX
371
CCCXI
373
CCCXII
374
CCCXIII
379
CCCXIV
380
CCCXV
381
CCCXVI
382
CCCXVIII
383
CCCXXI
384
CCCXXIII
385
CCCXXIV
386
CCCXXV
387
CCCXXVI
389
CCCXXVII
390
CCCXXVIII
391
CCCXXX
392
CCCXXXIII
393
CCCXXXV
394
CCCXXXVII
395
CCCXXXIX
396
CCCXLII
397
CCCXLIII
398
CCCXLIV
399
CCCXLVI
400
CCCXLVII
401
CCCL
402
CCCLI
405
CCCLII
419
Copyright

Other editions - View all

Common terms and phrases

Bibliographic information