Page images
PDF
EPUB

sponding late age—the fore-limbs in the embryos of the several descendants of the parent-species will still resemble each other closely, for they will not have been modified. But in each of our new species, the embryonic fore-limbs will differ greatly from the fore-limbs in the mature animal; the limbs in the latter having undergone much modification at a rather late period of life, and having thus been converted into hands, or paddles, or wings. Whatever influence long-continued exercise or use on the one hand, and disuse on the other, may have in modifying an organ, such influence will mainly affect the mature animal, which has come to its full powers of activity and has to gain its own living; and the effects thus produced will be inherited at a corresponding mature age. Whereas the young will remain unmodified, or be modified in a lesser degree, by the effects of use and disuse. In certain cases the successive steps of variation might supervene, from causes of which we are wholly ignorant, at a very early period of life, or each step might be inherited at an earlier period than that at which it first appeared. In either case (as with the short-faced tumbler) the young or embryo would closely resemble the mature parent-form. We have seen that this is the rule of development in certain whole groups of animals, as with cuttle-fish and spiders, and with a few members of the great class of insects, as with Aphis. With respect to the final cause of the young in these cases not undergoing any metamorphosis, or closely resembling their parents from their earliest age, we can see that this would result from the two following contingencies: firstly, from the young, during a course of modification carried on for many generations, having to provide for their own wants at a very early stage

[graphic]
[graphic]
[graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic]
[graphic]
[graphic]

of development, and secondly, from their following exactly the same habits of life with their parents; for in this case, it would be indispensable for the existence of the species, that the child should be modified at a very early age in the same manner with its parents, in accordance with their similar habits. Some further explanation, however, of the embryo not undergoing any metamorphosis is perhaps requisite. If, on the other hand, it profited the young to follow habits of life in any degree different from those of their parent, and consequently to be constructed in a slightly different manner, then, on the principle of inheritance at corresponding ages, the active young or larvae might easily be rendered by natural selection different to any conceivable extent from their parents. Such differences might, also, become correlated with successive stages of development; so that the larvae, in the first stage, might differ greatly from the larvae in the second stage, as we have seen to be the case with cirripedes. The adult might become fitted for sites or habits, in which organs of locomotion or of the senses, &c., would be useless; and in this case the final metamorphosis would be said to be retrograde. As all the organic beings, extinct and recent, which have ever lived on this earth have to be classed together, and as all have been connected by the finest gradations, the best, or indeed, if our collections were nearly perfect, the only possible arrangement, would be genealogical. Descent being on my view the hidden bond of connexion which naturalists have been seeking under the term of the natural system. On this view we can understand how it is that, in the eyes of most naturalists, the structure of the embryo is even more important for classification than that of the adult. For the embryo is the animal in its less modified state;

[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]

and in so far it reveals the structure of its progenitor. In two groups of animals, however much they may at present differ from each other in structure and habits, if they pass through the same or similar embryonic stages, we may feel assured that they have both descended from the same or nearly similar parents, and are therefore in that degree closely related. Thus, community in embryonic structure reveals community of descent. It will reveal this community of descent, however much the structure of the adult may have been modified and obscured; we have seen, for instance, that cirripedes can at once be recognised by their larvae as belonging to the great class of crustaceans. As the embryonic state of each species and group of species partially shows us the structure of their less modified ancient progenitors, we can clearly see why ancient and extinct forms of life should resemble the embryos of their descendants, our existing species. Agassiz believes this to be a law of nature; but I am bound to confess that I only hope to see the law hereafter proved true. It can be proved true in those cases alone in which the ancient state, now supposed to be represented in existing embryos, has not been obliterated, either by the successive variations in a long course of modification having supervened at a very early age, or by the variations having been inherited at an earlier period than that at which they first appeared. It should also be borne in mind, that the supposed law of resemblance of ancient forms of life to the embryonic stages of recent forms, may be true, but yet, owing to the geological record not extending far enough back in time, may remain for a long period, or for ever, incapable of demonstration. Thus, as it seems to me, the leading facts in embryology, which are second in importance to none in natural history, are explained on the principle of slight modifications not appearing, in the many descendants from some one ancient progenitor, at a very early period in the life of each, though perhaps caused at the earliest, and being inherited at a corresponding not early period. Embryology rises greatly in interest, when we thus look at the embryo as a picture, more or less obscured, of the common parent-form of each great class of animals.

[graphic]
[graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic]
[graphic]

Rudimentary, atrophied, or aborted Organs.—Organs or parts in this strange condition, bearing the stamp of inutility, are extremely common throughout nature. For instance, rudimentary mammae are very general in the males of mammals: I presume that the “bastard-wing" in birds may be safely considered as a digit in a rudimentary state: in very many snakes one lobe of the lungs is rudimentary; in other snakes there are rudiments of the pelvis and hind limbs. Some of the cases of rudimentary organs are extremely curious; for instance, the presence of teeth in foetal whales, which when grown up have not a tooth in their heads; and the presence of teeth, which never cut through the gums, in the upper jaws of our unborn calves. It has even been stated on good authority that rudiments of teeth can be detected in the beaks of certain embryonic birds. Nothing can be plainer than that wings are formed for flight, yet in how many insects do we see wings so reduced in size as to be utterly incapable of flight, and not rarely lying under wing-cases, firmly soldered together!

The meaning of rudimentary organs is often quite unmistakeable: for instance there are beetles of the same genus (and even of the same species) resembling each other most closely in all respects, one of which will have full-sized wings, and another mere rudiments of membrane; and here it is impossible to doubt, that the

[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]
[graphic]

rudiments represent wings. Rudimentary organs sometimes retain their potentiality, and are merely not developed: this seems to be the case with the mammae of male mammals, for many instances are on record of these organs having become well developed in full-grown males, and having secreted milk. So again there are normally four developed and two rudimentary teats in the udders of the genus Bos, but in our domestic cows the two sometimes become developed and give milk. In plants of the same species the petals sometimes occur as mere rudiments, and sometimes in a welldeveloped state. In plants with separated sexes, the male flowers often have a rudiment of a pistil; and Kölreuter found that by crossing such male plants with an hermaphrodite species, the rudiment of the pistil in the hybrid offspring was much increased in size; and this shows that the rudiment and the perfect pistil are essentially alike in nature. An organ serving for two purposes, may become rudimentary or utterly aborted for one, even the more important purpose; and remain perfectly efficient for the other. Thus in plants, the office of the pistil is to allow the pollen-tubes to reach the ovules protected in the ovarium at its base. The pistil consists of a stigma supported on the style; but in some Compositae, the male florets, which of course cannot be fecundated, have a pistil, which is in a rudimentary state, for it is not crowned with a stigma; but the style remains well developed, and is clothed with hairs as in other compositae, for the purpose of brushing the pollen out of the surrounding anthers. Again, an organ may become rudimentary for its proper purpose, and be used for a distinct object: in certain fish the swim-bladder seems to be nearly rudimentary for its proper function of giving buoyancy, but has become converted into a

[graphic]
[graphic]
[graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic]
[graphic]
[graphic]
« PreviousContinue »