[OP]

[Op1]

[Op2]

[R]

[Ru]

[S]

[S1]

[S2]

[S3]

[S4]

[San]

[Ser]

[Sh]

[St]

[Su]

[VSC]

BIBLIOGRAPHY

xvii

Olshanetsky, M. and Perelomov, A.: Quantum integrable systems related to Lie alge-

bras,

Phys. Rep.

94 (1983), 313-404.

Opdam, E.: Some applications of hypergeometric shift operators,

Invent. Math.

98,

(1989) 267-282.

Opdam, E.: Harmonic analysis for certain representations of graded Heeke algebras,

Acta. Math.

175, (1995), 75-121.

Rains, E.: BOn-symmetric polynomials, Transform. Groups 10 (2005), no. 1, 63-132.

Ruijsenaars, S.N.M.: Complete integrability of relativistic Calogero-Moser systems and

elliptic function identities,

Comm. Math. Phys.

110 (1987) 191-213.

Schur, I.: Uber die rationalen Darstellungen der allgemeinen linearen Gruppe,

Sitz.

Konig. Preuss. Akad. Wiss. Berlin

22 (1927), 360-371. (in

Werke,

3, 439-52)

Sahi S.: Interpolation, integrality, and a generalization of Macdonald's polynomials,

Internat. Math. Res. Notices 10, (1996), 457-471.

Sahi S.: The binomial formula for nonsymmetric Macdonald polynomials, Duke Math.

J. 94 (1998), no. 3, 465-477.

Sahi S.: Non-symmetric Koornwinder polynomials and duality,

Ann. Math.

150 (1999),

267-282.

Sahi, S.: The spectrum of certain invariant differential operators associated to a sym-

metric space, in

Lie Theory and Geometry: in honour of Bertram Kostant.

Progr. in

Math 123, Birkhauser, Boston, 1994, 569-576.

Sanderson, Y.: On the connection between Macdonald polynomials and Demazure char-

acters, J.

Alg. Comb.

11, (2000), 269-275.

Sergeev, A.N.: Superanalogs of the Calogero operators and Jack polynomials, J.

Non-

linear Math. Phys.

8 (2001), no. 1, 59-64.

Shastry, B.S.: Exact solution of an S = 1/2 Heisenberg antiferromagnetic chain with

long-ranged interactions, Phys.Rev.Lett. 60 (1988), 639-642.

Stanley,

R.:

Some combinatorial properties of Jack symmetric functions,

Adv. Math.

77 (1989), 76-115.

Sutherland, B.: Exact results for quantum many-body problem in one dimension,

Phys.

Rep. A

5 (1972), 1375-1376.

Veselov, A.P., Styrkas, K.L. and Chalykh, O.A.: Algebraic integrability for the

Schrodinger equation and finite reflection groups,

Theor. Math. Physics,

94(2) (1993),

253-275.

[W] Weyl, H.: The Classical Groups, (1946), Princeton Univ. Press

[Y]

Young, A.: Quantitative substitutional analysis, in

The collected papers of A. Young,

Toronto (University of Toronto Press) (1977)

CONTEMPORARY MATHEMATICS

xvii