## The Shaping of Arithmetic after C.F. Gauss's Disquisitiones ArithmeticaeCatherine Goldstein, Norbert Schappacher, Joachim Schwermer Since its publication, C.F. Gauss's Disquisitiones Arithmeticae (1801) has acquired an almost mythical reputation, standing as an ideal of exposition in notation, problems and methods; as a model of organisation and theory building; and as a source of mathematical inspiration. Eighteen authors - mathematicians, historians, philosophers - have collaborated in this volume to assess the impact of the Disquisitiones, in the two centuries since its publication. |

### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Other editions - View all

### Common terms and phrases

Abel algebraic integers algebraic numbers analysis angewandte Mathematik arithmetic Berlin Bianchi Biermann binary quadratic forms Cantor Cauchy chap coefﬁcients complex numbers composition concept congruences coprime cyclotomic cyclotomy Dedekind deﬁned deﬁnition Dickson Dirichlet Disquisitiones Arithmeticae Disquisitiones generales divisor domain Eisenstein elliptic functions equations equivalent factors Fermat’s ﬁeld ﬁnally ﬁnd ﬁnite ﬁrst form f Galois Gauß Gauss sums Gaussian integers generales de congruentiis geometry Göttingen Hermite Hermite’s Hilbert Humboldt Hurwitz ideal numbers inﬁnite inﬂuence irreducible irreducible polynomial Jacobi Journal f¨ur Kronecker Kronecker’s Kummer Lagrange Legendre Leipzig Leopold Kronecker letter magnitudes mathematicians mathématiques Mathematische Minkowski modulo multiplication norm number ﬁelds number theory paper Paris polynomial prime number proof proved quadratic reciprocity law quadratic residue rational numbers reine und angewandte Repr residues Richard Dedekind roots of unity Schappacher sciences scientiﬁc speciﬁc Springer ternary forms Teubner theory of numbers transl Uber Weierstrass Werke Wissenschaften Zahlen Zahlentheorie Zolotarev