Page images


favoured and is still alive on its summit, so we occasionally see an animal like the Ornithorhynchus or Lepidosiren, which in some small degree connects by its affinities two large branches of life, and which has apparently been saved from fatal competition by having inhabited protected station. As buds give rise by growth to fresh buds, and these, if vigorous, branch out and overtop on all sides many a feebler branch, so by generation I believe it has been with the great Tree of Life, which fills with its dead and broken branches the crust of the earth, and covers the surface with its ever branching and beautiful ramifications,



LAWS OF VARIATION Effects of external conditions-Use and disuse, combined with

natural selection; organs of flight and of vision-Acclimatisation-Correlation of growth-Compensation and economy of growth-False correlations-Multiple, rudimentary, and lowly organised structures variable-Parts developed in an unusual manner are highly variable : specific characters more variable than generic : secondary sexual characters variable—Species of the same genus vary in an analogous manner-Reversions to

long-lost characters-Summary. I HAVE hitherto sometimes spoken as if the variations

common and multiform in organic beings under domestication, and in a lesser degree in those in a state of nature had been due to chance. This, of course, is a wholly incorrect expression, but it serves to acknowledge plainly our ignorance of the cause of each particular variation. Some authors believe it to be as much the function of the reproductive system to produce individual differences, or very slight deviations of structure, as to make the child like its parents. But the much greater variability, as well as the greater frequency of monstrosities, under domestication or cultivation, than under nature, leads to the belief that deviations of structure are in some way due to the nature of the conditions of life, to which the parents and their more remote' ancestors have been exposed during several generations. I have remarked in the first chapter-but a long catalogue of facts which cannot be here given would be necessary to show the truth of the remark-that the reproductive system is eminently susceptible to changes in the conditions of life; and to this system being functionally disturbed in the parents, I chiefly attribute the varying or plastic condition of the offspring. The male and female sexual elements seem to be affected before that union takes place which is to form a new being. In the case of sporting plants, the bud, which in its earliest condition does not apparently differ essentially from an ovule, is alone affected. But why, because the reproductive system is disturbed, this or that part should vary more or less, we

are profoundly ignorant. Nevertheless, we can here and there dimly catch a faint ray of light, and we may feel sure that there must be some cause for each deviation of structure, however slight.

How much direct effect difference of climate, food, &c., produces on any being is extremely doubtful. My impression is, that the effect is small in the case of animals, but more in that of plants. We may, at least, safely conclude that such influences cannot have produced the many striking and complex co-adaptations of structure between one organic being and another, which we see everywhere throughout nature. Some little influence may be attributed to climate, food, &c. : thus, E. Forbes speaks confidently that shlles at their southern limit, and when living in shallow water, vary and become more brightly coloured than those of the same species further north or from greater depths. Gould believes that birds of the same species are more brightly coloured under a clear atmosphere, than when living on islands or near the coast. So with insects, Wollaston is convinced that residence near the sea affects their colours. MoquinTandon gives a list of plants which when growing near the sea-shore have their leaves in some degree fleshy, though not elsewhere fleshy. Several other such cases could be given.

The fact of varieties of one species, when they range into the zone of habitation of other species, often acquiring in a very slight degree some of the characters of such species, accords with our view that species of all kinds are only well-marked and permanent varieties. Thus the species of shells which are confined to tropical and shallow seas are generally brighter-coloured than those confined to cold and deeper seas. The birds which are confined to continents are, according to Mr. Gould, brighter-coloured than those of islands. The insect-species confined to sea-coasts, as every collector knows, are often brassy or lurid. Plants which live exclusively on the sea-side are very apt to have fleshy leaves. He who believes in the creation of each species, will have to say that this shell, for instance, was created with bright colours for a warm sea; but that this other shell became bright-coloured by variation when it ranged into warmer or shallower waters.

When a variation is of the slightest use to a being, we cannot tell how much of it to attribute to the


accumulative action of natural selection, and how much to the conditions of life. Thus, it is well known to furriers that animals of the same species have thicker and better fur the more severe the climate is under which they have lived; but who can tell how much of this difference may be due to the warmest-clad individuals having been favoured and preserved during many generations, and how much to the direct action of the severe climate ? for it would appear that climate has some direct action on the hair of our domestic quadrupeds.

Instances could be given of the same variety being produced under conditions of life as different as well be conceived ; and, on the other hand, of different varieties being produced from the same species under apparently the same conditions. Such facts show how indirectly the conditions of life act. Again, innumerable instances are known to every naturalist of species keeping true, or not varying at all, although living under the most opposite climates. Such considerations as these incline me to lay very little weight on the direct action of the conditions of life. Indirectly, as already remarked, they seem to play an important part in affecting the reproductive system, and in thus inducing variability; and natural selection will then accumulate all profitable variations, however slight, until they become plainly developed and appreciable by us.


Effects of Use and Disuse.-From the facts alluded to in the first chapter, I think there can be little doubt that use in domestic animals strengthens and enlarges certain parts, and disuse diminishes them ; and that such modifications are inherited. Under free nature, we can have no standard of comparison, by which to judge of the effects of long-continued use or disuse, for we know not the parent-forms; but many animals have structures which can be explained by the effects of disuse. As Professor Owen has remarked, there

reater anomaly in nature than a bird that cannot fly; yet there are several in this state. The loggerheaded duck of South America can only flap along the surface of the water, and has its wings in nearly the same condition as the domestic Aylesbury duck. As the larger ground-feeding birds seldom take flight except to escape danger, I believe that the nearly wingless

is no

condition of several birds, which now inhabit or have lately inhabited several oceanic islands, tenanted by no heast of prey, has been caused by disuse. The ostrich indeed inhabits continents and is exposed to danger from which it cannot escape by flight, but by kicking it can defend itself from enemies, as well as any of the smaller quadrupeds. We may believe that the progenitor of the ostrich genus had habits like those of a bustard, and that as natural selection increased in successive generations the size and weight of its body, its legs were used more, and its wings less, until they became incapable of flight.

Kirby has remarked (and I have observed the same fact) that the anterior tarsi, or feet, of many male dungfeeding beetles are very often broken off ; he examined seventeen specimens in his own collection, and not one had even a relic left. In the Onites apelles the tarsi are so habitually lost, that the insect has been described as not having them. In some other genera they are present, but in a rudimentary condition. In the Ateuchus or sacred beetle of the Egyptians, they are totally deficient. The evidence that accidental mutilations can be inherited is at present 'very scanty ; but the remarkable case observed by Brown-Séquard of epilepsy produced by injuring the spinal chord of guinea-pigs, being inherited, should make us cautious. So that it will perhaps be safest to look at the entire absence of the anterior tarsi in Ateuchus, and their rudimentary condition in some other genera, as due to the long-continued effects of disuse in their progenitors; for as the tarsi are almost always lost in many dung-feeding beetles, they must be lost early in life, and therefore cannot be of much importance or be much used by these insects.

In some cases we might easily put down to disuse modifications of structure which are wholly, or mainly, due to natural selection. Mr. Wollaston has discovered the remarkable fact that 200 beetles out of the 550 species inhabiting Madeira are so far deficient in wings that they cannot fly ; and that of the twenty-nine endemic genera, no less than twenty-three genera have all their species in this condition! Several facts, namely, that beetles in many parts of the world are frequently blown to sea and perish; that the beetles in Madeira, as observed by Mr. Wollaston, lie much concealed, until the wind lulls and the sun shines; that the

« PreviousContinue »